Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
6.1 Conditional Probability

Office Hours:

BKD, 6th floor of Sirindhralai building
Wednesday 14:00-15:30
Friday 14:00-15:30

Suppose we have a diagnostic test for a particular disease which is 99% accurate. The test gives a positive result.

What is the probability that the person actually has the disease?

News: September 2015

Disease Testing

- Suppose we have a diagnostic test for a particular disease which is 99% accurate.
- A person is picked at random and tested for the disease.
- The test gives a positive result.
- Q1: What is the probability that the person actually has the disease?
- Natural answer: 99% because the test gets it right 99% of the times.

99\% accurate test?

- Two kinds of error
- If you use this test on many persons with the disease, the test will indicate correctly that those persons have disease 99% of the time.
- False negative rate $=1 \%=0.01$

$$
1 \rightarrow 0
$$

- If you use this test on many persons without the disease, the test will indicate correctly that those persons do not have disease 99% of the time.
- False positive rate $=1 \%=0.01$

$$
0 \rightarrow 1
$$

False positive and false negative

Type I error
(false positive)

Type II error
(false negative)

Disease Testing: The Question

- Suppose we have a diagnostic test for a particular disease which is 99% accurate.
- A person is picked at random and tested for the disease.
- The test gives a positive result.
- Q1: What is the probability that the person actually has the disease?
- Natural answer: 99% because the test gets it right 99% of the times.
- Q2: Can the answer be 1% or 2% ?
- Q3: Can the answer be 50% ?

Disease Testing: The Answer

Q1: What is the probability that the person actually has the disease?

A1: The answer actually depends on how common or how rare the disease is!

Why?

- Let's assume rare disease.
- The disease affects about 1 person in 10,000.
- Try an experiment with 10^{6} people.
- Approximately $\mathbf{1 0 0}$ people will have the disease.
- What would the (99%-accurate) test say?

Results of the test

Results of the test

99 of them will test positive 1 of them will test negative

100 people w/ disease
Of those who test positive, only $\frac{99}{99+9,999} \approx 1 \%$ actually have the disease!

989,901 of them will test negative
9,999 of them will test positive

